SecGraph: A Uniform and Open-source Evaluation System for Graph Data Anonymization and De-anonymization

نویسندگان

  • Shouling Ji
  • Weiqing Li
  • Prateek Mittal
  • Xin Hu
  • Raheem A. Beyah
چکیده

In this paper, we analyze and systematize the state-ofthe-art graph data privacy and utility techniques. Specifically, we propose and develop SecGraph (available at [1]), a uniform and open-source Secure Graph data sharing/publishing system. In SecGraph, we systematically study, implement, and evaluate 11 graph data anonymization algorithms, 19 data utility metrics, and 15 modern Structure-based De-Anonymization (SDA) attacks. To the best of our knowledge, SecGraph is the first such system that enables data owners to anonymize data by state-of-the-art anonymization techniques, measure the data’s utility, and evaluate the data’s vulnerability against modern De-Anonymization (DA) attacks. In addition, SecGraph enables researchers to conduct fair analysis and evaluation of existing and newly developed anonymization/DA techniques. Leveraging SecGraph, we conduct extensive experiments to systematically evaluate the existing graph data anonymization and DA techniques. The results demonstrate that (i) most anonymization schemes can partially or conditionally preserve most graph utilities while losing some application utility; (ii) no DA attack is optimum in all scenarios. The DA performance depends on several factors, e.g., similarity between anonymized and auxiliary data, graph density, and DA heuristics; and (iii) all the state-of-the-art anonymization schemes are vulnerable to several or all of the modern SDA attacks. The degree of vulnerability of each anonymization scheme depends on how much and which data utility it preserves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Method for Utility Preserving Social Network Graph Anonymization Based on Mathematical Modeling

In recent years, privacy concerns about social network graph data publishing has increased due to the widespread use of such data for research purposes. This paper addresses the problem of identity disclosure risk of a node assuming that the adversary identifies one of its immediate neighbors in the published data. The related anonymity level of a graph is formulated and a mathematical model is...

متن کامل

How to Quantify Graph De-anonymization Risks

An increasing amount of data are becoming publicly available over the Internet. These data are released after applying some anonymization techniques. Recently, researchers have paid significant attention to analyzing the risks of publishing privacy-sensitive data. Even if data anonymization techniques were applied to protect privacy-sensitive data, several de-anonymization attacks have been pro...

متن کامل

Quantification of De-anonymization Risks in Social Networks

The risks of publishing privacy-sensitive data have received considerable attention recently. Several deanonymization attacks have been proposed to re-identify individuals even if data anonymization techniques were applied. However, there is no theoretical quantification for relating the data utility that is preserved by the anonymization techniques and the data vulnerability against de-anonymi...

متن کامل

De-SAG: On the De-anonymization of Structure-Attribute Graph Data

In this paper, we study the impacts of non-Personal Identifiable Information (non-PII) on the privacy of graph data with attribute information (e.g., social networks data with users’ profiles (attributes)), namely Structure-Attribute Graph (SAG) data, both theoretically and empirically. Our main contributions are two-fold: (i) we conduct the first attribute-based anonymity analysis for SAG data...

متن کامل

Learning to de-anonymize social networks

Releasing anonymized social network data for analysis has been a popular idea among data providers. Despite evidence to the contrary the belief that anonymization will solve the privacy problem in practice refuses to die. This dissertation contributes to the field of social graph de-anonymization by demonstrating that even automated models can be quite successful in breaching the privacy of suc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015